The SDL Component Suite is an industry leading collection of components supporting scientific and engineering computing. Please visit the SDL Web site for more information....



GeoEllipsoidData


Unit:SDL_geobasics
Class:none
Declaration: GeoEllipsoidData: array[TGeoEllipsoid, 1..2] of double = ....

The constant array GeoEllipsoidData contains common reference ellipsoids used in various maps. The reference ellipsoids are defined by their semimajor (first column of the array) and semiminor axes (second column). Currently the following ellipsoids are defined:

TGeoEllipsoid Ellipsoid Name
gelWGS84 WGS 1984
gelWGS72 WGS 1972
gelWGS66 WGS 1966
gelWGS60 WGS 1960
gelClrk80 Clarke 1880
gelClrk66 Clarke 1866
gelBess41 Bessel 1841
gelBess41Jap Bessel 1841 (Japan)
gelBess41Nam Bessel 1841 (Namibia)
gelNewInt67 New International 1967
gelInt24 International 1924
gelEver69 Everest 1969 (Malaysia)
gelEver56 Everest 1956 (India)
gelEver48 Everest 1948
gelEver30 Everest 1830 (India)
gelEverPak Everest (Pakistan)
gelEverest Everest
gelGRS80 GRS 1980
gelAiry30 Airy 1830
gelModifAiry Modified Airy
gelFish68 Fisher 1968
gelFish60 Fisher 1960
gelModifFish60 Modified Fisher 1960
gelAuNat65 Australian Nat 1965
gelKrass40 Krassovsky 1940
gelHough60 Hough 1960
gelSphere Normal Sphere
gelIndo74 Indonesian 1974
gelHelm06 Helmert 1906
gelSGS85 SGS 1985
gelSAm69 South American 1969
gelATS77 ATS77 (Eastern Canada)
gelAuthSph Authalic Sphere
gelBesselMod Bessel Modified
gelCGCS2000 CGCS2000
gelClrk58 Clarke 1858
gelClrk66Mich Clarke 1866 Michigan
gelClrk80 Clarke 1880
gelClrk80Arc Clarke 1880 (Arc)
gelClrk80Benoit Clarke 1880 (Benoit)
gelClrk80IGN Clarke 1880 (IGN)
gelClrk80intfoot Clarke 1880 (international foot)
gelClrk80SGA22 Clarke 1880 (SGA 1922)
gelDan76 Danish 1876
gelEver30 Everest (1830 Definition)
gelEver75 Everest 1830 (1975 Definition)
gelGEM10C GEM 10C
gelGRS67 GRS 1967
gelGRS67Mod GRS 1967 Modified
gelHughes80 Hughes 1980
gelIAG75 IAG 1975
gelInt24AuthSph International 1924 Authalic Sphere
gelOSU86F OSU86F
gelOSU91A OSU91A
gelPlessis17 Plessis 1817
gelPopVisSphere Popular Visualisation Sphere
gelPZ90 PZ-90
gelStruve60 Struve 1860
gelWarOffice War Office
gelHongKong63 Hong Kong 1963
gelNahrwan29 Nahrwan 1929

Hint: Sometimes the definition of the reference ellipsoids in the literature is given by the semimajor axis and the reciprocal flattening of the ellipsoids. You can easily calculate the reciprocal flattening by using the RecipFlattening function (version [1]).



Last Update: 2012-Oct-20